Table 1: Mass Energy Ratios for EV Batteries

Battery	Volts	$\underline{\text { Amp }}$	Wh $(\mathrm{hours}$	Battery mass (lbs)	kWh $(\mathrm{Wh} \div 1000)$	$\mathrm{Lbs} / \mathrm{kWh}$ $(\mathrm{Lbs} \div \mathrm{kWh})$
Lithium	12					
Lead	12					

Table 2: EV Charging

EV model	$\underline{\mathbf{k W h} /}$
2014 Honda Fites	

100 Miles

A	B	C	D
Energy	$\mathrm{kWh} /$ 100 miles (Table 2)	Lbs $/ \mathrm{kWh}$ (Table 1)	Lbs $/ 100$ miles $(\mathrm{B} \mathrm{X} \mathrm{C)}$
Lithium			
Lead			

Table 3: Mass Needed per
Table 4: Battery Cost for 100 Mile Range

A	$\underline{\underline{B}}$	C	D	E	F
Battery type	Cost (\$)	kWh (from Table 1)	Cost $/ \mathrm{kWh}$ (Cost $\div \mathrm{C}$)	$\mathrm{kWh} / 100 \mathrm{mi}$. (from Table 2)	Cost $/ 100 \mathrm{mi}$. (D X E)
Lithium					
Lead					

Table 5: Land Needed for Ethanol Production ${ }^{1,2,3}$

Gasoline use/day	$\div 0.67$ $=$ gas to ethanol ratio	$\times 42$ gal./bbl $=$ ttl gal. needed	$\times 365$ day/yr. gal./ gr.	$\div 80$ gal./ton switchgr./ year	$\div 9.4$ $=$ ton/acre total acre/year	$\div 640$ acres/mile = total square mi.

Table 6: Combustion of Switchgrass $4,5,6,7$

Switchgr. kWh/ton	$\begin{gathered} \div 2000 \\ \mathrm{lb} / \mathrm{ton} \\ =\mathrm{kWh} / \mathrm{lb} \end{gathered}$	$\begin{aligned} & \text { X } 0.95 \\ &= \text { transmis. } \\ & \text { efficiency } \end{aligned}$	$\begin{gathered} \text { X } 0.81 \\ =\text { charg. } \\ \text { efficiency } \end{gathered}$	$\begin{gathered} \text { X } 100 \\ =\mathrm{kWh} / 100 \mathrm{lbs} \end{gathered}$	$\begin{aligned} & \text { X } 3.45 \mathrm{mi} . / \mathrm{kWh} \\ &= \text { miles } / 100 \mathrm{lbs} \text { for } \\ & \text { electric Honda Fit } \end{aligned}$

Table 7: Fermentation of Switchgrass ${ }^{7,2}$

Gas-powered Honda Fit mpg	$\div 0.67$ = Gas to ethanol ratio	Switchgr. mi./100 lbs for ethanol Honda Fit $\times 0.040 \mathrm{gal} . / \mathrm{lb}$

Handout: Economic and Environmental Costs of Electric and Flex-Fuel Vehicle

Table 8: Kilowatt Hours per Unit Fuel ${ }^{8,9}$

Fuel used	$\underline{\text { Total kWh }}$	Total fuel consumed	Original fuel unit	Unit conversion	kWh per converted unit	Converted unit
coal			per ton	$2 \mathrm{~K} \mathrm{lbs/ton}$		per lb
oil			per barrel	42 gal/bbl		per gal.
gas			per ft 3	N/A		per ft^{3}

Table 9: Miles per Unit Fuel ${ }^{5,6,7}$

Fuel used	kWh per converted unit	Transmission efficiency	Charging efficiency	Miles per kWh	Miles per unit fuel	Converted unit
coal		0.95	0.81	3.44		per lb
oil		0.95	0.81	3.44		per gal.
gas		0.95	0.81	3.44		per ft 3

Table 10: Effect of Supply on Oil Price ${ }^{10}$

Mill. bbl. oil consumed by US per day	\% increase in US consumption	Millions of barrels consumed by US per day	Price per bbl. (\$)	New price per bbl.
	10.00			

Table 11: Effect of Oil Price on Economic Growth ${ }^{11,12}$

Tax per barrel	\% reduction in US GDP

Literature Cited:

1. US Energy Information Administration FAQ's. https://www.eia.gov/tools/faqs/faq.php?id=23\&t=10
2. US Department of Energy. Alternative Fuels Data Center. Accessed on June 17, 2023.
https://afdc.energy.gov/fuels/properties
3. USDA. 2019. Switchgrass (Panicum virgatum) for Biofuel Production. Farm Energy. April 3, 2019. Accessed on March 30, 2024. https://farm-energy.extension.org/switchgrass-panicum-virgatum-for-biofuel-production/ (based on 80 gallons ethanol per ton $\& 9.4$ tons per acre per year)
4. Burn Test Proves Hopeful. Renewable Energy World. June 19, 2006. Accessed on Jun 17, 2023. https://www.renewableenergyworld.com/baseload/switchgrass-burn-test-proves-hopeful-45188/ (based on $19,607,000 \mathrm{kWh}$ per 15,647 tons of switchgrass)
5. US Energy Information Administration FAQ's. https://www.eia.gov/tools/faqs/faq.php?id=105\&t=3
6. Batteries: What We Know About Them \& How to Use Them. Home Power 1997, April/May, p 66.
7. Fuel Economy Guide. www.fueleconomy.gov (based on 100 miles / 29 kWh)
8. US Energy Information Administration. https://www.eia.gov/totalenergy/data/monthly/pdf/sec7 5.pdf
9. US Energy Information Administration. https://www.eia.gov/totalenergy/data/monthly/pdf/sec7 9.pdf
10. Rule of thumb (price drops $\$ 4$ for each million bbls) (obtained by request from the Energy Information Administration c.2011): InfoCtr@eia.gov
11. A Simple Rule Of Thumb Regarding Oil And How It Impacts The Economy. Business

Insider. February 24, 2011. Available online: https://www.businessinsider.com/oil-impact-on-the-economy-2011-2 (adjusted for inflation)
12. CPI Inflation Calculator. https://www.in2013dollars.com/us/inflation/2011?amount=1

